Learn about diversity at ASEE
ASEE would like to acknowledge the generous support of our premier corporate partners.


By Aman Yadav, Mary A. Lundeberg, Charles F. Bunting, Dipendra raj Subedi

JEE SelectsIt Doesn’t Feel Like Learning

Problem-solving instruction works but still presents challenges.

Engineers use knowledge to solve problems, so it makes sense to involve students in learning based on problem situations. Theoretically, problem-based learning (PBL) can make content relevant to students and enhance their understanding. Until now, however, research on the impact of PBL has been limited to student and faculty perceptions of this approach. Our study examined both the impact of PBL on students’ ability to gain conceptual understanding and their attitude toward this form of instruction.

Fifty-five undergraduate students from an introductory electrical engineering course participated in this research. Both traditional lectures and problem-based learning were implemented alternatively in an A-B-A-B research design over the 16-week course to examine differences between the two approaches. In the PBL portions, students worked in teams of three or four students to solve ill-structured problems. These hypothetical situations mirrored what students would most likely face as engineers, and involved them in making complex engineering decisions and in producing solutions to engineering problems. We assessed students’ conceptual understanding using open-ended problem scenarios in a pre- and post-test format. At the end of the course, students completed a survey to compare their perceptions of learning from traditional lecture and PBL.

Our results reveal the promise and potential challenges in PBL instruction. We found that students performed twice as well when learning from PBL compared with traditional lectures. Our research provides evidence that PBL can significantly influence students’ conceptual understanding of engineering problems and can contribute to making them lifelong learners as demanded by the 21st-century engineering profession.

However, students themselves reached the opposite conclusion: They thought they learned more when traditional lectures were used.

Engineering faculty interested in using problem-based learning or any other kinds of active learning should be aware that they may encounter student resistance and discomfort when learning from PBL, especially if students have primarily learned from traditional approaches. Hence, it is important to provide students with guidance to navigate the open-ended nature of PBL approaches. Students become more comfortable if faculty acknowledge the challenging aspects of PBL. One mechanism is for faculty to ask students who have previously undergone the PBL process to share the benefits of this approach and challenges students are likely to face. This discussion could break down student misconceptions and highlight beneficial aspects of PBL.

Another challenge is overcoming student discomfort with how they will be assessed. Even when active learning methods such as PBL are used, students’ grasp of the material is still often measured by traditional means (i.e., plug and chug quizzes). Without lectures, students may not realize what they have learned and may feel less prepared for traditional exams. Faculty interested in implementing problem-based learning could adopt other assessments – projects or exercises focused on unstructured problems – that emphasize and reward students’ critical thinking skills.

Finally, students sometimes express concerns about not enough content being covered when active learning methods are used. These concerns are largely a matter of conditioned response to the lack of what may be considered traditional treatment of a topic. In most instances, use of active learning actually has permitted extended coverage of topics and not required the exclusion of critical material. Faculty members need to think about what content to teach with problem-based approaches and what to cover with lectures. Engineering has a hierarchical knowledge structure; students require adequate basic knowledge to be successful at learning later concepts.

Our findings strongly corroborate previous research from other disciplines that PBL allows students to form a better conceptual understanding and transfer their learning to other situations. Given the complex nature of the engineering profession, which requires engineers to solve complex problems, PBL is well suited to helping students cope with the demands of the ill-structured nature of the field.


Aman Yadav is an assistant professor of educational psychology at Purdue University; Mary Lundeberg is a professor of teacher education at the University of Wisconsin-River Falls; Charles Bunting is an associate professor of electrical and computer engineering at Oklahoma State University; Dipendra Raj Subedi is a psychometrician at the American Institutes for Research. This is adapted from “Problem-based Learning: Influence on Students’ Learning in an Electrical Engineering Course” in the April 2011 Journal of Engineering Education.




© Copyright 2011
American Society for Engineering Education
1818 N Street, N.W., Suite 600
Washington, DC 20036-2479
Telephone: (202) 331-3500