Learn about diversity at ASEE
ASEE would like to acknowledge the generous support of our premier corporate partners.


Opinion by Deborah L. Illman

Reaching a Larger Audience

Engineering students aren’t learning how to spread their message.

Let’s adjust the curriculum to encourage students with strong verbal skills. - Deborah L. Illman  Studies have shown that Americans generally do not understand the nature of engineering, appreciate how it differs from science, or hold the profession in very high esteem. Why would they? Science and scientists get the lion’s share of media coverage. Meanwhile, the word technology has become synonymous with computing and communication devices, while advances in other engineering disciplines – be it aeronautics, bioengineering, civil and environmental engineering, materials development, or beyond – remain hidden.

Engineers could improve public understanding of their profession with sharper communications skills. But 12 years of leading a program in science and engineering news and nonfiction writing at a leading research university suggests that few engineering students participate in such courses or pursue careers involving public communication to the extent science students do. This realization came, much to my chagrin, after analyzing enrollment figures for our program, then housed within the engineering school’s department of technical communication (TC). I could count on one hand the number of students who came to my writing classes, other than technical communications courses, from engineering disciplines over a five-year period. Even though the courses were advertised to all departments in exactly the same way, science students outnumbered engineering students by about 30 to 1. What’s more, every award-winning writer has been a science graduate student.

Engineering’s communication gap has spurred national efforts to improve public awareness, such as last year’s launch of a new website by the National Academy of Engineering. Its goal:  to promote broad implementation of recommendations in the 2008 NAE report, “Changing the Conversation: Messages for Improving Public Understanding of Engineering.” Yet when it comes to teaching future engineers to be better writers and communicators, most academic programs have not addressed, to an adequate degree, communication for broader audiences.

There is considerable variation in the configuration of engineering communication courses from campus to campus. Whether housed in the technical communication, English, or other department, most focus on genres of communication for technical audiences: recommendation reports, proposals, design documents, memos, and oral presentations. Traditionally, programs have not tapped the journalism faculty’s expertise or aimed to help students reach a broader, nontechnical audience.

Maintaining such strictly separated silos is counterproductive. Engineering departments have been quick to note the lack of room in the curriculum for communications courses. Some even protest that engineering students are “writing averse.” Overcoming the former is a matter of will; it will require a commitment on the part of faculty and administrators to get serious about enhancing the preparation of engineers to include communicating with broader audiences. The second barrier is a self-defeating, often self-fulfilling myth. Research by Zhang et al. (2004) found significant correlation between a student’s odds of graduating in engineering and high school GPA and math SAT scores. By contrast, students with strong verbal SAT scores were less likely to graduate with an engineering degree. The curriculum needs courses and activities that would help retain those highly verbal future public ambassadors for engineering.

We should prime the tech-journalism pipeline by helping undergraduate and graduate engineering students gain mass-media experience. News-writing courses and experiences help students not only in writing but also in engaging with practicing professionals; putting their science and engineering learning in societal context; developing analytical skills; observing real science and engineering in practice; thinking on their feet; and becoming better speakers, interviewers, and listeners. Schools should also encourage greater participation in programs like the AAAS Mass Media Science and Engineering Fellows Program and in local chapters and affiliates of the National Association of Science Writers. In 2010, the AAAS program hosted a total of 12 fellows, with one engineering student versus 11 science students. Similarly, in 2011, the program hosted a total of 11 fellows, with one engineering student versus 10 science students.

Also helpful would be writer-in-residence programs at engineering schools. If we want our students to change the conversation about engineering, let’s give them the tools to do it.


Deborah L. Illman is the editor of Northwest Science & Technology, published by the University of Washington, Seattle, and a former senior fellow of the National Science Foundation Discovery Corps.




© Copyright 2012
American Society for Engineering Education
1818 N Street, N.W., Suite 600
Washington, DC 20036-2479
Telephone: (202) 331-3500